If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-4x-2=0
a = 11; b = -4; c = -2;
Δ = b2-4ac
Δ = -42-4·11·(-2)
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{26}}{2*11}=\frac{4-2\sqrt{26}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{26}}{2*11}=\frac{4+2\sqrt{26}}{22} $
| -3x+1=2x-3-x | | 2a−5=−3a | | 3x+66÷6=-5x | | 9/13=u/8 | | 9x-2-7x(1/x-1/2)=1+x/2/2+23/4 | | {3x+66}{6}=-5x | | X+y+4=68 | | -5(-7x+7)=7(6x-6)+35 | | 2+2n=4n-3-n | | Y+3(y-4)=16 | | 5(7x-7)=4(-5x+6)+106 | | 6(5x+6)=5(3x+8)-34 | | 3^(2x-5)=13 | | 2(n+5)=4n-5 | | 9x+27=4x-18 | | 2x-4(4x-3)=-16 | | Y=112y | | 2(n+5=4n-5) | | x+16=45+(5x16) | | 3x-7=-7(4x-8)+30 | | 3x+5=3(4x-8)+74 | | F(-4)=x2-3x+9 | | 4x+8=7(8x+4)+84 | | 0.3^x=17 | | 5r+5=2r+8 | | 3.9=0.7^x | | 3.9=7^x | | -3x-51=-8x | | 8x^-19=2x^-x | | -5(j-3)-j-2=-6j-13 | | 18+3x(2+5)=x | | 35+0.8x=70+0.5x |